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ABSTRACT

Code certification is a lightweight approach to demonstrate
software quality on a formal level. Its basic idea is to re-
quire code producers to provide formal proofs that their
code satisfies certain quality properties. These proofs serve
as certificates which can be checked independently. Since
code certification uses the same underlying technology as
program verification, it also requires many detailed anno-
tations (e.g., loop invariants) to make the proofs possible.
However, manually adding these annotations to the code is
time-consuming and error-prone.

We address this problem by combining code certification
with automatic program synthesis. We propose an approach
to generate simultaneously, from a high-level specification,
code and all annotations required to certify the generated
code. Here, we describe a certification extension of AUTO-
BAYES, a synthesis tool which automatically generates com-
plex data analysis programs from compact specifications.
AUuTOBAYES contains sufficient high-level domain knowledge
to generate detailed annotations. This allows us to use a
general-purpose verification condition generator to produce
a set of proof obligations in first-order logic. The obligations
are then discharged using the automated theorem prover E-
SETHEO. We demonstrate our approach by certifying op-
erator safety and memory safety for a generated iterative
data classification program without manual annotation of
the code.

Categoriesand Subject Descriptors
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[Artificial Intelligence]: Deduction and Theorem Prov-
ing; 1.2.3 [Artificial Intelligence]: Automatic Program-
ming
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1. INTRODUCTION

Code certification is a lightweight approach to demon-
strate software quality on a formal level. It concentrates on
certain aspects of software quality which can be defined and
formalized via properties, e.g., operator safety or memory
safety. Its basic idea is to require code producers to provide
formal proofs that their code satisfies these quality proper-
ties. The proofs serve as certificates which can be checked
independently, by the code consumer or by a certification
authority, for example the FAA.

Code certification is an alternative to other, more estab-
lished validation and verification techniques. It is more for-
mal than code inspection and can show stronger properties.
In contrast to testing, code certification demonstrates that
the properties of interest hold for all possible execution paths
of the program. It also complements software model check-
ing which works on a different set of properties (typical-
ly liveness properties as for example absence of deadlocks).
Moreover, model checking does not produce explicit certifi-
cates: while it can produce counter-examples if a property
is violated, validity follows only indirectly from the claim of
an exhaustive search through the state space which cannot
be checked independently.

In essence, code certification is a more tractable version
of traditional axiomatic or Hoare-style program verification.
It uses the same basic technology: the program is annotat-
ed with an axiomatic specification, the annotated program
is fed into a verification condition generator (VCG) which
produces a series of proof obligations, the proof obligations
are proven or discharged by an automated theorem prover
(ATP). The difference, however, is in the details: the cer-
tified properties are much simpler and much more regular
than full behavioral specifications. Both aspects are cru-
cial: Since the properties are much simpler, the resulting
proof obligations are much simpler as well. Consequent-
ly, discharging them is also much easier; in many cases, all
proof obligations can be shown fully automatically. Since
the properties are much more regular, the annotations can
be derived schematically from a formulated safety policy.
Consequently, the specification effort—which can become
overwhelming in traditional verification—is also much small-
er.

In an ideal world, all certification steps (i.e, annotation,
verification condition generation, and proof) become part of
the compilation process. A certifying compiler (e.g., Touch-
stone [5] or Cyclone [13]) thus usually comprises three com-
ponents: VCG, ATP, and the proper compiler. The VCG is
often specialized with respect to the safety policy support-



ed by the compiler, or, more precisely, the safety policy is
hardcoded into the VCG. Hence, it can automatically insert
the necessary annotations into the program.

However, code certification shares not only the underlying
technology with Hoare-style program verification but also a
fundamental limitation: in order to certify non-trivial pro-
grams or non-trivial properties, auxiliary annotations (e.g.,
loop invariants) are required. Since these annotations de-
scribe program-specific properties, the VCG cannot derive
them automatically from the safety policy; instead, they
must be provided manually by the software designer. This
severely limits the practical usability of certification approach-
es like proof-carrying code (PCC) [23].

In this paper we address this problem by combining code
certification with automatic program synthesis. Program
synthesis (cf. [16] for an overview) is an approach to auto-
matically generate executable code from high-level specifica-
tions. Our basic idea is to generate not only code but also all
annotations required to certify the generated code. We will
illustrate that a program synthesis system formalizes enough
high-level domain knowledge from which annotations can
be generated such that more complicated safety policies can
be certified for more complicated programs. This domain
knowledge cannot be recovered from the program by a cer-
tifying compiler as used in PCC. We will further illustrate
that state-of-the-art automated theorem provers can solve
the verification conditions arising from the certification of
such automatically synthesized annotated code. The work
reported in this paper describes an important step towards
our long-term goal of extending a program synthesis system
such that all generated programs can be certified completely
automatically, thus relieving the users from having to anno-
tate their code.

The remainder of the paper is organized as follows. In
Section 2, we briefly describe methods and techniques un-
derlying our approach: property verification, proof carrying
code, and program synthesis. Section 3 contains a detailed
architectural description of the certifying synthesizer. We
specifically focus on how the safety-policy is reflected in ex-
tended Hoare-rules and how the annotations are produced
and propagated during the synthesis process. We further-
more give a short description of the automated prover E-
SETHEO and discuss results from processing the generated
verification conditions. Section 4 covers related work and in
Section 5 we conclude and sketch out future work.

2. BACKGROUND

Since this paper combines different areas, we first give
some background on program verification and certification,
on the notion of proof-carrying code, and on automated pro-
gram synthesis, in particular the AUTOBAYES-system.

2.1 Property Verification

Traditionally, program verification has focused on show-
ing the functional equivalence of (full) specification and im-
plementation. However, this verification style is still too
demanding, because of the involved specification and proof
efforts, respectively. Therefore, more recent approaches con-
centrate on showing specific properties that are important
for software safety. For example, model checking has been
used successfully to verify liveness and safety aspects of dis-
tributed software systems [30]. We extend this property-
oriented verification style in two key aspects. First, we use

automated theorem provers for full first-order logic that do
not require abstractions and that produce the necessary “re-
al” proofs that can be checked independently. Second, we
investigate how this approach can be extended towards a
broader set of properties.

While many mechanisms and tools for verifying program
properties have been published, especially for distributed
systems, relatively little attention has been paid to the prop-
erties themselves. The related work in this area is usually
concerned with computer security [26]; we are interested in
all “useful” properties. To help guide our research, we have
created an initial taxonomy of verifiable aspects of programs,
as shown in Figure 1. This list is, however, only a first at-
tempt at describing the universe of verifiable program as-
pects.

We first distinguish between functional and property-based
verification. Functional verification is necessary to show
that a program correctly implements a high-level specifica-
tion. Typically, these proofs are performed by showing that
a program is equivalent to, or a refinement of, some higher
level specification. Property-based verification, on the oth-
er hand, ensures that the programs have desirable features
(e.g. absence of runtime errors), but does not show pro-
gram correctness in the traditional sense. These properties
are often simpler to verify than full functional correctness; in
fact, many of the properties are necessary to show function-
al correctness. These properties can be grouped into four
categories: safety, resource-limit, liveness, and security.

Safety properties prevent the program from performing il-
legal or nonsensical operations, such as attempting to access
memory not allocated to the program or divide a number
by zero. Within this category, we further subdivide into five
different aspects of safety:

Memory safety properties assert that all memory access-
es involving arrays and pointers are within their as-
signed bounds.

Type safety properties assert that a program is “well
typed” according to a type system defined for the lan-
guage. This type system may correspond to the stan-
dard type system for the language, or may enforce
additional type checking obligations, such as ensuring
that all variables representing physical quantities have
correct and compatible units and dimensions (cf. [18]).
For languages with type hierarchies, it is also possible
to check that all narrowing typecasts are safe and will
not cause runtime errors.

Numeric safety properties assert that programs will per-
form arithmetic correctly. Potential errors include: (1)
using partial operators, like divide or square root, with
arguments outside their defined domain (e.g., 5/0),
(2) performing computations that yield results larg-
er (overflow) or smaller (underflow) than are repre-
sentable on the computer, and (3) performing floating
point operations which cause an unacceptable loss of
precision.

Exception handling properties ensure that all except-
ions that can be thrown within a program are handled
within the program.

Environment compatibility properties ensure that the
program is compatible with its target environment.
Compatibility constraints specify hardware, operating
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Figure 1: Property-based verification and functional verification

systems, and libraries necessary for safe execution. Pa-
rameter conventions define constraints on program com-
munication and invocation.

Resource limit properties check that the required resources
for a computation are within some bound. Liveness/progress
properties are used to show that the program will eventually
perform some required activity, or will not be permanently
blocked waiting for resources. Security properties prevent a
program from accidental or malicious tampering with the
environment. Security policies regulate access to system
resources, and are often enforced by authentication proce-
dures, which determine the identity of the program or user
involved.

Clearly, there is overlap between the categories; for exam-
ple, many security flaws are due to safety violations. Our
list also includes many properties that are difficult or impos-
sible to automatically verify in the general case. We plan to
extend and clarify this taxonomy in future work. For this
project, we are interested in properties that are amenable
to automatic verification but still useful to verify. Initially,
we have chosen to investigate two safety properties: array
bounds checks and numeric partial operator/function do-
main errors.

2.2 Proof-Carrying Code

Proof-carrying code [23, 1] is a certification approach es-
pecially for mobile code. Many distributed systems (e.g.,
browsers, cellular phones) allow the user to download exe-
cutable code and run it on the local machine. If, howev-
er, the origin of this code is unknown, or the source is not
trustworthy, this poses a considerable risk: the dynamically
loaded code may not be compatible with the current system
status (e.g., operating system version, available resources),
or the code can destroy (on purpose or not) critical data.

The concept of proof-carrying code and an accompany-
ing system architecture (Figure 2) have been developed to

address the problem of showing certain properties (i.e., a
safety policy) efficiently at the time when the software is
downloaded. The developer of the software annotates the
program which is subsequently compiled into object-code
using a certifying compiler. Such a compiler (e.g., Touch-
stone [5]) carries over the annotation into annotations on the
object code level. A verification condition generator process-
es the annotated code together with a public safety policy.
The VCG produces a large number of proof obligations. If
all of them are proven (by a theorem prover), the safety pol-
icy holds for this program. However, since these activities
are performed by the producer, the provided proofs are not
necessarily trustworthy. Therefore, the annotated code and
a compressed copy of the proofs are packaged together and
sent to the user. The user reconstructs the proof obligations
and uses a proof checker to ensure that the conditions match
up with the proofs as delivered with the software. Both, the
local VCG and the proof checker, need to be trusted in this
approach. However, since a proof checker is much simpler
in its internal structure than a prover, it is simpler to de-
sign and implement in a correct and trustworthy manner.
Furthermore, checking a proof is very efficient, in stark con-
trast to finding the proof in the first place—which is usually
a very complex and time-consuming process.

A number of PCC-approaches have been developed, par-
ticularly focusing on the compact and efficient representa-
tion of proofs (e.g., using LCF [23] or HOL [1]). However,
as mentioned earlier, all of these approaches are in practice
restricted to very simple properties. More intricate proper-
ties require the producer of the program to provide elabo-
rate annotations and to carry out complicated formal proofs
manually.

2.3 Program Synthesis

Automated program synthesis aims at automatically con-
structing executable programs from high-level specifications.
Although a variety of approaches exist [16], we will focus in
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Figure 2: Typical architecture for proof carrying
code. Trusted components are shaded.

this paper on a specific system, AUTOBAYES [8]. AUTOBAYES
generates complex data analysis programs (currently up to
1200 lines of C++ code) from compact specifications. In
the following, we will introduce its application domain by
means of an example and will describe the main features of
the underlying synthesis machinery.

EXAMPLE 1. Throughout this paper, we will use the fol-
lowing simple but realistic classification example. Our task
is to analyze spectral data measurements, e.g., from a star.
Our instrument registers photons and their energy. All we
know is that a photon originates from one of M different
sources which emit photons at different energy levels. The
energy of each photon is not sharply defined but described by
a normal distribution with a certain mean value and stan-
dard deviation. However, we do mot know the mean and
standard deviation for each source, nor do we know their rel-
ative strength (i.e., the percentage of photons coming from
each individual source). Figure 8 shows an example data set
for M =3 (see [8] for the physical background).

A statistical model can be written down easily and in a
compact way. For the measurements xo,...,En—1 we know
that each point is normal distributed (Gaussian) around the
mean value p with a standard deviation o for the class (in-
dividual source) c; to which the photon belongs, i.e., x; ~
N(uci,afi) These class assignments c; and the relative class
percentages p are not known. All we know is that all photons
belong to one of the classes, i.e., Ef\/j pi =1, and that sum-
ming up the class assignments results in the desired percent-
ages. These four formulas comprise the core of the problem
specification.

An implementation for this specification, however, requires
an iterative numerical algorithm® which approzimates the

'In our case, an EM (expectation maximization) algorithm
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Figure 3: Example spectral data for three sources
(M = 3). The parameters are u; = 290.7,01 =
0.15,p1 = 0.61, po = 291.13,02 = 0.18,p> = 0.33, and
ps = 291.55,03 = 0.21,p3 = 0.06 (modeled after the
spectrum of N Hs molecules)

values of the desired variables p, o, and p.

AUTOBAYES takes a specification similar to the formulas
above (a total of 19 lines including all declarations, see [8]
for details) and generates executable C++ code of roughly
380 lines (including comments but not annotations) in less
than a second on a SunBladel000. <

AUuTOBAYES synthesizes code by exhaustive, layered ap-
plication of schemas. A schema consists of a program frag-
ment with open slots and a set of applicability conditions.
The slots are filled in with code pieces by the synthesis pro-
gram calling schemas in a recursive way. The conditions
constrain how the slots can be filled; they must be proven
to hold in the given specification before the schema can be
applied. Some of the schemas contain calls to symbolic equa-
tion solvers, others contain entire skeletons of statistical or
numerical algorithms. By recursively invoking schemas and
composing the resulting code fragments, AUTOBAYES is able
to automatically synthesize programs of considerable size
and internal complexity.

Let us consider the schema which is automatically select-
ed as the core to solve our example. This schema, presented
in a Prolog notation in Figure 4 below, solves the task to
estimate the desired parameters (u, p,o in our example) by
maximizing their probability with respect to certain random
variables (for a detailed description of the statistical back-
ground see [9]).

This information is provided as a formal input param-
eter to the schema in Figure 4. The output parameter
Code_fragment? returns the synthesized code. After check-
ing that this schema can be applied, the parts of the EM-
algorithm are assembled. First, we generate a randomized
initialization for the array q, then the iteration code starts.
As in most numerical optimization algorithms (cf. [12, 24]),
we update the local array q until we have reached our de-
sired accuracy (abbreviated as while-converging). The
code fragments for the initialization of q and to calculate the
updates (M-Step and E-Step) are constructed by recursively
calling schemas on the respective subproblems. In Figure 4,

is generated.



these parts are included in (...). Text set in typewriter font
denotes code fragments in the target language; underlined
words (like max) are keywords from AUTOBAYES’s specifica-
tion language.

schema( max P(U|V) urt V, Code_fragment? ) :-
(* applicability constraints *)
— Code_fragment =
begin
(* Initialize: *)
{(guess values for c[i])
for i:=1 to N do for j:=1 to M do
qli,jl1 := 0;
for k:=1 to M do
qlk,clk]] := 1;
while-converging(V) do
(* M-step: *){ max P({g,U}|V) urt V)
(* E-step: calculate P(q|{U,V})*)
ali,jl := (...)
end (* end while-converging *)
end

Figure 4: EM-Schema (Fragment)

While we cannot present details of the synthesis process
here, we want to emphasize that the code is assembled from
building blocks which are obtained by symbolic computation
or schema instantiation. The schemas clearly lay out the
domain knowledge and important design decisions. As we
will see later on, they can be extended in such a way that the
annotations required for the certification are also generated
automatically.

3. SYSTEM ARCHITECTURE

The architecture of our certifying synthesis system is sim-
ilar to the typical proof-carrying code architecture as shown
in Figure 2. However, since we are currently not dealing with
proof validation aspects, we only have three major building
blocks (Figure 5): the synthesis system AUTOBAYES (which
replaces the certifying compiler), the verification condition
generator MoPs, and the automated theorem prover E-SE-
THEO. All system components used in certification will be
described in some more detail below.

The system’s input is a statistical model which defines the
data analysis task as shown above. This specification need
not be modified for certification—the process is thus com-
pletely transparent to the user. AUTOBAYES then attempts
to synthesize code using the schemas described above. These
schemas are extended appropriately (cf. Section 3.3) to sup-
port the automatic generation of code annotations. AuTO-
BAvES produces Modula-2 code? which carries the annota-
tions as comments. Annotations and code are then pro-
cessed by the verification condition generator Mops. Its
output is a set of proof obligations in first order predicate
logic which must be proven to show the desired properties.
In order to do so, a domain theory in form of a set of ax-
ioms (basically defining all operations and functions in the
proof tasks) must be added to the formulas. Finally, these

2Since Mops works on Modula-2, we extended AUTOBAYES
to generate Modula-2 code. Usually, AUTOBAYES synthe-
sizes C++/C programs for Octave [22] and Matlab [20].

extended proof obligations are fed into the automated the-
orem prover E-SETHEO.

For our prototype implementation, we added several small
“glue” modules which convert the syntactical representa-
tion between all components. These are implemented in
lex/yacc, awk, and Unix shell sh.

input specification
X ~ N(rmu, si gma)

max pr(x | nmu..

l
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Annotation Propagation

annotated | Modula-2 code Safety
policy
Mops Verification CG
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[
[
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asize(nmu) = N Domain
and ...
theory

E-SETHEO

Figure 5: AutoBayes system architecture, extended
for code certification

3.1 SafetyPolicy

The first step in certification is to define precisely what
constitutes safe behavior for the programs. In our case, we
must first make precise our informal notions of memory and
operator safety by formulating them as predicates within a
logic. Then, we must define some mechanism to transform a
program into a series of verification conditions that are valid
if and only if the safety properties are satisfied. In the sec-
tions below, we formulate the safety properties and describe
the mechanism for creating the verification conditions.

Hoare rules [34] form the foundation of our approach.
Hoare rules are triples of the form

{r} C {Q}

where C is a statement in an imperative programming lan-
guage, and P and @) are predicates. The statement acts as
a predicate transformer, that is, it describes how (the state
described by) predicate P is transformed into predicate Q
by the execution of C. Our idea is to add explicit memo-
ry safety and operator safety constraints to the predicates
in the rules to ensure that each statement is memory and
operator safe. For the most part, these modifications are in
the form of strengthened preconditions for each of the rules,
as shown in Figure 6.

3.1.1 Array Bounds Safety Policy



To show array bounds safety, we first need some notion of
array bounds within the assertion language, an aspect that
is traditionally ignored within Hoare-style proofs. This is
accomplished by defining variables within the assertion lan-
guage to refer to the array bounds. Once we have these, we
can test that each subscript expression within a statement
is within the appropriate dimension for the array.

More concretely, we assume that given an array « of di-
mentsion n + 1, all array dimensions 0 < k < n have the
lower bound zero, and an upper bound that is represent-
ed by ASIZE(x,k). The ASIZE(x,k) notation is used to
denote the unique variable representing that array bound.

We can then determine what it means for an expression to
be array-bounds safe. Given an expression E, we say that it
is array bounds safe if every array subscript expression for
variable z in dimension k is between zero and ASIZE(z, k)—
1. To check, we define a function ArrayRefs(E) that returns
a set of pairs of the form (z,(eo,e1,...,en)). Each pair
describes an array reference, where x is the array variable
and (e, €1,...,en) is the sequence of subscript expressions
used to access the array. Then, we can define a safe array
reference SafeRef(x,{eo,e1,...,€n)) as:

SafeRef (z,{eo,e1,...,en)) =
Va:0.ne0<e, < ASIZE(x,a)

From this predicate, we can define expression safety w.r.t.
the array bounds safety policy as follows:

SafeErpr,(E) =
Y(z, seq) € ArrayRefs(E) o SafeRef (x, seq)

These two predicates state that, for each array reference,
every subscript expression is within bounds.

Unfortunately, the SafeRef and SafeEzpr, predicates are
higher-order, as they quantify over expressions in the pro-
gram syntax. However, Since ArrayRefs(E) yields a finite
set, we can expand these quantified predicates over variables
and expressions into a sequence of first-order predicates. For
example, given the statement:

qlk, c[k]] := 1/v; (1)

SafeEzpr , (E) yields the following safety predicate, once ex-
panded:

0<kAk < ASIZE(q,0)A
0 < c[k] A c[k] < ASIZE(q,1)A
0<kAk < ASIZE(c,0)

By checking that all array subscripts are within bounds for
each array reference for each expression, we can determine
array bounds safety.

3.1.2 Operator Safety Policy

To show operator safety, we only need to show that all
divisors are different from zero. All other partial operators,
such as square root, are implemented as standard library
functions, and not as programming language language con-
structs. The domain constraints on these functions are en-
forced by standard pre- and post-conditions.

To check for zero divisors, we define a function divisors(E),
which returns the set of subexpressions of F used as divisors

within the expression. From this function, we can define ex-
pression safety with respect to the operator safety policy as
follows:

SafeEzpr,(E) = Ve € divisors(E)ee # 0

So, given the statement (1), SafeEzpr, (E) yields the follow-
ing safety predicate, once expanded:

v#0
3.1.3 Extended Hoarerules

Now that we have defined expression safety with respect
to operator safety and array bounds safety, we can extend
the Hoare rules with respect to these policies. First, we
define SafeEzpr(E) as:

SafeExpr(E) = SafeEzpr, (E) A SafeEzpry(E)

Then the Hoare rules can be formulated as shown in Fig-
ure 6.

The first rule applies to array declarations. Declarations
are usually ignored in Hoare-logic, but in our case a declara-
tion rule is required to describe array bounds. As described
above, we create a variable ASIZE(x, k) to refer to the size
of array x at dimension k. The declaration of an array is
an assignment of values to these variables. The rule works
by replacing instances of ASIZE(z,k) in the postcondition
of a statement with the variable declaration expression. For
example, given an array declaration:

var ¢: array[nclasses] of REAL

and a postcondition ASIZE(x,0) = nclasses, this rule would
generate the following precondition:

nclasses = nclasses

which is obviously true. Through substitution, this rule pro-
vides the necessary support to reason about the size of array
bounds.

It is worth noting that a seemingly more intuitive scheme,
based on explicit equalities rather than substitution applica-
tion, is incomplete. In this case, we could define ASIZE(x, k)
as a function, and the precondition of this rule to be:

PANASIZE(z,0) =eoA... NASIZE(z,n) =en

Unfortunately, this approach requires that ASIZE(x,0) =
eo, etc., are provable from the postcondition of the previ-
ous statement or the functional precondition, which is not
possible.

The second rule, assignment of scalars, is the same as
the standard Hoare assignment rule, except that it has a
strengthened precondition that checks that the assignment
expression is safe w.r.t. our safety policies.

The third rule describes assignment of array cells. Unlike
scalar assignment, array cell assignment cannot be handled
by simple substitution, because of the possibility of aliasing
of array cells. Instead, we think of the array as describ-
ing a mapping function from cells to values. An assignment
to a cell is an update of the mapping function, written as
z{(eo,e1,...,en) — €}. This approach is the standard ex-
tension of the Hoare calculus to handle arrays and is de-
scribed fully in [19]. We strengthen the precondition of this
rule to ensure that both the subscript expressions in the
left-hand side and the assignment expression are safe.



Array Declaration Rule:

Pleo/ASIZE(x,0), e1/ASIZE(x,1), ..., en/ASIZE(z,n)|A

SafeEzpr(eg) A SafeEzpr(ei)A

SafeEzpr(en)

Scalar Assignment Rule:

P[z{(CO; €1y, en) - e}]/\
Array Assignment Rule: SafeEzpr(e)A
SafeEzpr(zleg,€1,...,€n])

{P ANbA SafeEzpr(b)} ¢ {Q}

{P[e/x] A\ SafeEzpr(e)} = :=e {P}

var ¢ : array[eg,e€i1,...,en] of Y {P}

z[eo,€1,...,en] := € {P}

(P A —b A SafeEzpr(b) — Q)

Conditional Statement Rule:

{P A SafeEzpr(b)} if b then ¢ {Q}

{P AbA SafeEzpr(b)} ¢ {P A SafeEzpr(b)}

While Loop Rule:

{P A SafeExpr(b)} while bdo ¢ {P A —bA SafeEzpr(b)}

PAhey<z<er
A SafeEzpr(eo) p C {
A SafeEzpr(er)

For Loop Rule:

Pl(z+1)/z] A SafeEzpr(eg)}
A SafeEzpr(e1)

{ Pleo/z] A eo < e1 A SafeEzpr(eo)

A SafeEzpr(er1)

{P} so {R} {R} s1 {Q}
{P} s0581 {Q}

Sequence Rule:

Pr= P {P}C{Q} @ = Q

}forz::eotoeldoC{

Rule of Consequence:

{P'} ¢ {Q'}

Pl(e1 + 1)/z] A SafeEzpr(eo)}
A SafeEzpr(er)

Figure 6: Hoare rules with safety policy extensions

The next three rules describe conditional and loop state-
ments. They are the same as the standard Hoare rules,
with strengthened preconditions to show that their expres-
sions (but not their statement bodies) are safe. The safety
of the statement bodies can be shown by recursive applica-
tion of the Hoare rules. These applications will generate the
necessary safety predicates as a precondition to the loop or
if-statement bodies. Finally, we define the standard Hoare
rule of consequence, which states that we can always legally
strengthen the precondition or weaken the postcondition of
a statement. Soundness of all rules is obvious.

3.2 The Verification Condition Generator

In the typical proof-carrying code architecture as shown
in Figure 2 the safety policy is a separate component. In
practice, however, it is hardcoded into the verification con-
dition generator component of the certifying compiler. In
our approach all required annotations are generated so that
any VCG can be used. For our experiments, we used the
VCG of the Modula Proving System Mops [14]. MOPS is
a Hoare-calculus based verification system for a large sub-
set of the programming language Modula-2 [35], including
pointers, arrays, and other data structures. The only lan-
guage constructs not supported are variant record types,
procedure types, and procedures as parameters. The verifi-
cation of REAL-arithmetics is idealized and ignores possible
rounding errors. MOPS supports the verification of arbitrary
program segments and not only procedures or modules. The
verification segments can be nested to break large proofs into

manageable pieces.

Mops uses a subset of VDM-SL [6] as its specification
language; this is interpreted here only as syntactic sugar
for classical first-order logic. All annotations are written as
Modula-2 comments enclosed in (*{...}*). Pre- and post-
conditions start with the keywords pre and post, respective-
ly, loop invariants with a loopinv, and additional assertions
with an assert.

3.3 Annotations and their Propagation

Annotating the large programs created by AUTOBAYES
requires careful attention to detail and many annotations.
There are potentially dozens of loops requiring an invariant,
and nesting of loops and if-statements can make it diffi-
cult to determine what is necessary to completely annotate
a statement. The schema-guided synthesis mechanism of
AUTOBAYES makes it easy to produce annotations local to
the current statement, as the generation of annotations is
tightly coupled to the individual schema. For this reason,
we split the task of creating the statement annotations in-
to two parts: creating local annotations during the run of
AUTOBAYES, and propagating the annotations through the
code.

3.3.1 Local Annotations

The local annotations for a statement describe the changes
in variables made by the statement, without needing to de-
scribe all of the global information that may later be neces-
sary for proofs.



EXAMPLE 2. The code fragment which performs the ini-
tialization of the intermediate arrays (q and c) is defined
in the schema described in Figure 4. The following listing
shows the corresponding code fragment from the annotated
schema.

01 (*{ pre

02 (forall a: int &

03 (0 <= aand a < N) => 0 <= c[a] <= M) }x*)
04 (*{ loopinv

05 0<=1iand i <= N - 1 and

06 0<=jand j <=M -1 and

o7 (forall a,b : int &

08 ((0 <= a and a < i) and

09 (0 <= b and b < j)) => qla,b] = 0.0) }*)

10 FOR i := 0 TO N - 1 DO
11 FOR j :=0 TO M- 10D0

12 qli,jl := 0.0;

13 END;

14 END;

15 (*{ assert

16 i=0Nand j =M and

17 (forall a,b : int &

18 ((0 <= a and a < N) and (0 <= b and b < M))
19 => qla,b] = 0.0) }*)

20 (*{ loopinv

21 0 <=k and k <= N - 1 and

22 (forall a, b: int &

23 ((0 <= a and a < N) and

24 (0 <= b and b < M)

25 => 0 <= q[a,b] and q[a,b] <= 1.0) }*)

26 FOR k := 0 to N - 1 DO
27 qlk,c[k]] := 1.0;

28 END

29 (* post

30 (forall a,b : int &

31 ((0 <= a and a < N) and

32 (0 <= b and b < M))

33 => 0 <= q[a,b] and q[a,b] <= 1.0) 1}*)

<

During synthesis (i.e., at the time when the schemas are
instantiated), the annotations are produced locally for each
statement. Each loop is annotated with a schematic invari-
ant and schematic pre- and postconditions describing how
it changes variables within the program. The specific form
of the invariants and assertions depends on the safety policy
supported by the synthesizer. For example, the precondi-
tion in lines 1-3 is required to show memory safety, more
specifically, the safety of the nested array access in line 27.
The fact that this precondition is actually required is part of
our domain knowledge and thus encoded within the schema.
Obviously, a modification or extension of the supported safe-
ty policy requires corresponding modifications or extensions
of the schemas.

3.3.2 Propagation of Annotations

Unfortunately, these local annotations are in general in-
sufficient to prove the postcondition at the end of a larger
code fragment. For example, at line 27 in the code, we do
not necessarily know what invariants held prior to the loop.
To overcome this problem, we propagate any unchanged in-
formation through the annotations. Because program syn-
thesis restricts aliasing to few, known places, the test which
statements influence which annotations can be accomplished
easily without full static analysis of the synthesized program.

EXAMPLE 3. In our example, we propagate the initial con-
dition about the vector c (lines 1-8) and add it to the loop

invariant and post-assertion for the first loop (lines 15-19).
Since the second loop does not change variable c, this condi-
tion is propagated forward into invariant and post-condition
of the second loop. <

Generally, the propagation algorithm works by creating
a tree (V,E) with vertices V and edges E. The vertices
V are initially labeled with the AUTOBAYES-generated local
annotations. The edges E describe the locations of the an-
notations relative to one another in the code according to
a lexicographic ordering which obeys the nesting of the lan-
guage constructs. Each vertex in the tree may have many
children in two categories: one sibling vertex and zero or
more child vertices, corresponding to the lexical placement
of the annotations in the code. The edges are labelled by
the set of variables that have been assigned between the
annotations.

EXAMPLE 4. Figure 8 gives an example annotation graph
for a code fragment. In this fragment, edges (Ao, As) and
(A1, As) describe sibling relationships and (Ao, A1), (A1, A2),
(A1, As3) and (A3, A4) describe parent/child relationships (da-
shed arrows). The code-fragment for this example does not
refer to any variables. Hence, the edges are not labeled. <

procedure propagate(root : Vertex,
inherited : predicate set)
begin
annotation(root) := annotation(root) U inherited;
forall c in children(root)
c_inherits := {};
vars := vars-assigned(edge(root,c));
forall a in annotations(root)
if variables(a) N wvars = {} then
c-tnherits := c_inherits U a;
end if
end forall
propagate(c,c_inherits)
end forall
end

Figure 7: The annotation propagation algorithm

The algorithm, shown in Figure 7, starts from the top of
the tree and performs a recursive depth-first traversal. The
parameters to the algorithm are the current root node of
the tree (root) and the set of inherited formulas (inherited).
The algorithm first updates the annotations associated with
the root node, annotation(root), to include the parent-node
formulas. Then, for each child, it creates a set of inherited
predicates (c_inherits) and calls itself recursively. The set
cnherits is a set of all predicates from annotation(root)
that do not contain variables modified by the intervening
code. This information is extracted from the labeling of the
edge between the root node and node c.

3.4 The Automated Prover

For our experiments we used the automated theorem prover
E-SETHEO, version csp01 [4]. E-SETHEO is a compositional
theorem prover for formulas in first order logic, combining
the systems E [27] and SETHEO [21, 17]. The subsystems are
based on the superposition, model elimination, and semantic
tree calculi. Depending on syntactic characteristics of the
input formula, an optimal schedule for each of the different
strategies is selected. These different schedules have been
computed from experimental data using machine learning



(*{ 4o }*)

while Bg do

(+{ 41 })

while B; do
if Bo then

(*{ 42 1)
end
(*{ A5 }%)
if B3 then
(*{ A1 3%
end
end

(*{ 4s }*)
end
(*{ 46 }*)

(A)

(B)

Figure 8: (A) A fragment of annotated code. (B) The annotation graph for the code.

techniques [29]. Because all of the subsystems work on for-
mulas in clausal normal form (CNF), the first order formula
is first converted into CNF using the module Flotter [32]. E-
SETHEO is one of the most powerful ATP systems available
as has been shown in recent international theorem proving
competitions [4].

Out of the 69 proof tasks of our example, E-SETHEO could
solve 65 automatically with a run-time limit of 60 seconds on
a 1000 Mhz. SunBlade workstation. Most of the tasks could
be solved in about one second, but several tasks took up to
40 seconds. The average elapsed proof time was 6.3 seconds.
The remaining four proof tasks required some manual pre-
processing and special strategies before they could be proven
automatically. Due to the flexible architecture of E-SETHEO,
these steps can be incorporated as new strategies. So, in the
near future, we expect to be able to handle all proof tasks
automatically.

4. RELATED WORK

We are not aware of any other work to automatically ex-
tract knowledge about the program under construction from
the synthesis process, whether for certification or for other
purposes. However, there is a large number of different ap-
proaches which share either techniques or goals with our
work.

The approach most closely related to ours is proof-carrying
code which has already been discussed in Section 2.2. How-
ever, due to its focus on mobile code, PCC covers many as-
pects we are (currently) not interested in, e.g., efficient proof
representation and proof checking. It also works on the level
of object code or typed intermediate languages (e.g., Flint
[28]) and is thus complementary to our approach. Certify-
ing compilers as Touchstone [5] or Cyclone [13] could conse-
quently be used to show that the safety policy established on
the source code level is not compromised by the compilation
step.

Lowry et al. [18] present an approach for certifying domain-
specific properties which is based on abstract interpretation.
They check programs for frame safety, an extended type
safety property. Other safety properties can also be encoded

in extended type systems and then checked via (extended)
type inference algorithms. Such approaches have been used
to show, for example, unit and dimensional safety [25, 15]
and memory safety [36]. However, these approaches usually
also require additional annotations, e.g., type declarations.
Moreover, most of them are restricted to a specific safety
policy and thus less general than proof-based certification
approaches.

Many reverse engineering approaches try to recover for-
mal specifications from code. Gannod and Cheng [11] use
a strongest postcondition predicate transformer to support
different reverse engineering tasks but their approach still re-
quires additional manual annotations (e.g., loop invariants).
Ernst et al. [7] try to infer such invariants dynamically, us-
ing a generate-and-test approach: potential invariants are
generated from a set of patterns and checked against pre-
viously collected run-time trace information. However, the
inferred predicates are not proven to be actually invariant so
that the approach is not suitable for certification purposes.
Flanagan and Leino [10] describe a similar system, Houdi-
ni, to support their ESC/Java verification system. Houdini
also uses a generate-and-test approach but the test phase re-
lies on ESC/Java to prove the invariants. However, Houdini
does not use domain knowledge in the generate phase and
is thus restricted in the kind of invariants it can recover.

Obviously, our research is also related to standard pro-
gram verification. However, program verification concen-
trates on showing full functional equivalence or refinement
between specifications and programs. This is true especially
for integrated development/proof environments as for ex-
ample the KIV system [31]. Moreover, program verification
systems usually offer no support to find and to formalize
the functional specifications and auxiliary annotations which
was the original motivation for our approach.

It is sometimes possible to encode aspects of the safety
policy into the logic used in a program verification system.
For example, if VDM is not interpreted as mere syntactic
sugar for classical logic but as notation for the three-valued
logic of partial functions (LPF) [2], a partial correctness
proof in MopPs already gives operator safety. However, it
is not clear what other safety policies can be encoded into



suitable logics.

5. CONCLUSIONS

In this paper, we have described a novel combination of
automated program synthesis and automated program veri-
fication. Our basic idea is to generate the program together
with detailed formal annotations which are required for a
fully automatic correctness proof. This approach is facilitat-
ed by the knowledge of the domain and the program under
construction which are formalized in the program synthe-
sis system. Since it is virtually impossible to re-generate
this information from the synthesized program only, our ap-
proach is much more powerful and “smarter” than a certi-
fying compiler and allows us to certify complex properties
for mid-sized programs fully automatically.

We have demonstrated the feasibility of our approach by
certifying operator safety and memory safety for an auto-
matically generated iterative data classification program.
The synthesized program consists of roughly 380 lines of
code, 90 of which are auto-generated comments to explain
the code. With all annotations (including annotation prop-
agation), it grows to 2,116 lines of code—a clear indication
than manual annotation is out of question. The annotat-
ed program induces 69 proof tasks in first-order logic. Af-
ter some minor preprocessing steps, all these tasks can be
solved automatically in relatively short time, using the the-
orem prover E-SETHEO.

Our long-term goal is to extend AUTOBAYES such that all
generated programs can be certified completely automati-
cally. We are confident that our approach can also be ex-
tended to other program synthesis systems, because they
generally encode enough abstract knowledge about the do-
main and the program under construction. We see a number
of benefits from this combination of program synthesis and
program verification. For the user of such a certifying syn-
thesis system, the major benefit is obviously the additional
verification of (important aspects of) the synthesized code;
moreover, it comes at no cost, and it can be double-checked
independently.

This independent verification complements the notion of
“correctness-by-construction” generally built into program
synthesis systems. This notion means that the system al-
ways produces code which correctly implements the user’s
specification. However, its validity depends on the cor-
rectness and consistency of the underlying synthesis engine
and the domain theory. Because these are large and com-
plex artifacts—comparable to a compiler—current technol-
ogy cannot guarantee their correctness. Thus, a user must
in reality “trust” that the synthesis system produces cor-
rect code. However, for safety/security semsitive code or
mission critical code, e.g., for navigation/state estimation
[33], this is not acceptable. Here, our approach provides a
tool and methodology to demonstrate important properties
of the code in an automatic and independently re-checkable
way.

The work described in this paper is only a first step to-
wards this goal. In our current prototype, the safety-policy
is hard-coded in the way the annotations are generated with-
in the synthesis schemas. We work on ways to explicitly
represent safety policies (e.g., using higher-order formula-
tions) and use this to tailor the annotation generation in
AUTOBAYES. Our architecture also relies on the correct-
ness of E-SETHEO. We are planning to extend our system

to incorporate a small and verified proof checker which is
able to give us the certainty that the proofs produced by
E-SETHEO are indeed correct. Furthermore, we plan to im-
plement a small and trustworthy verification condition gen-
erator. Future work will also be concerned with addressing
proof-carrying code related issues, in particular, a compact
representation of the proofs and performing the proofs on
annotated object-code.
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